

Sixth Semester B.E. Degree Examination, June/July 2011 Design of Machine Elements - II

Time: 3 hrs .
Max. Marks:100

Note: 1. Answer FIVE full questions selecting at least TWO questions from each part.
 2. Use of Design data hand book is permitted.
 3. Any missing data may be suitably assumed.
 PART - A

1 a. Determine the dimensions of the curved bar shown in Fig.Q1 (a). Assume $\sigma_{y t}=400 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{FoS}=3.5$.
(12 Marks)
(08 Marks)
2 A tube, with 50 mm and 75 mm inner and outer diameters respectively is reinforced by shrinking a jacket of outer diameter 100 mm . The compound tube has to withstand an internal pressure of 35 Mpa . Calculate the shrinkage allowance such that the maximum tangential stress in each tube has same magnitude. Also calculate the shrinkage pressure and show the distribution of tangential stresses. Assume $\mathrm{E}=207 \mathrm{kN} / \mathrm{mm}^{2}$.
(20 Marks)
3 a. Design a helical compression spring for a service load ranging from 2250 N to 2750 N . The axial deflection of the spring for the load range is 6 mm . Assume a spring index of 5 , permissible shear stress of 420 MPa and modulus of rigidity of $84 \mathrm{kN} / \mathrm{mm}^{2}$.
(12 Marks)
b. A truck spring has 12 leaves, two of which are full length leaves. The spring supports are 1.05 m apart and the central band is 85 mm wide. The central load is 5.4 kN and the permissible stress in spring material is 280 MPa . If the ratio of total depth to width of the spring is 3 , determine the thickness \& width of the spring leaves and also the deflection of the spring.
(08 Marks)
4 A 12 kw motor running at 1170 rpm drives a fan through a pair of spur gears (Forged steel SAE 1030 pinion \& CI gear) with a reduction ratio of 3.9:1. Design the gear and check for dynamic \& wear loads.
(20 Marks)

PART - B

5 A Pair of straight bevel gears are used to transmit 15 kw at 1500 rpm input speed. The number of teeth on pinion is 20 and the speed ratio is 5 . Design the gears for strength only assuming ${ }_{14 \frac{1}{2}}{ }^{\circ}$ full depth form.
(20 Marks)

6 a. Determine the dimensions of a simple cone clutch to transmit 20 kw at 1000 rpm . The minimum diameter is to be 300 mm and the cone angle 20°. Assume $\mu=0.2$ and permissible pressure $=0.1 \mathrm{~N} / \mathrm{mm}^{2}$. Also determine the axial force required to engage the clutch.
(12 Marks)
b. A differential band brake is shown in Fig. Q6 (b). The width and the thickness of the steel band are 100 mm and 3 mm respectively and the maximum tensile stress in the band is 50 $\mathrm{N} / \mathrm{mm}^{2}$. The coefficient of friction between the friction lining and the brake drum is 0.25 . Calculate:
i) The tensions in the band,
ii) The actuating force and
iii) The torque capacity of the brake.

Check whether the brake is self locking.

Fig. Q6 (b)
(08 Marks)
7 a. A 75 mm long full journal bearing of diameter 75 mm supports a radial load of 12 kN at the shaft speed of 1800 mm . Assume the ratio of diameter to the diametral clearance as 1000 . The viscosity of is $0.01 \frac{\mathrm{~N}-\mathrm{sec}}{\mathrm{m}^{2}}$ at the operating temperature. Determine:
i) Sommerfeld number
ii) Coefficient eff friction and
iii) Amount of heat generated.
b. Derive Petroff's equation for coefficient of friction in journal bearings.
(12 Marks)
(08 Marks)
8 a. Select a wire rope for a vertical mine hoist to lift a load of 55 kN from a depth of 300 meters. A rope speed of $500 \mathrm{~m} / \mathrm{min}$ is to be attained in 10 secs.
(12 Marks)
b. Select a V-belt drive to connect a $15 \mathrm{kw}, 2880 \mathrm{rpm}$ motor to a centrifugal pump, running at approximately 2400 rpm , for a service of 18 hrs per day. The center distance should be approximately 400 mm . Assume the pitch diameter of driving pulley as 125 mm . (08 Marks)

Sixth Semester B.E. Degree Examination, June/July 2011 Mechanical Vibration

Time: 3 hrs .
Max. Marks:100

Note: Answer FIVE full questions selecting at least TWO questions from each part.

1 a. Define the following :
i) Forced vibration.
ii) Simple harmonic motion.
iii) Degree of freedom.
(06 Marks)
b. What is beats phenonenon? Briefly explain. (04 Marks)
c. Add the following motions analytically and check the solution graphically :
$\mathrm{x}_{1}=2 \cos (\mathrm{t}+0.5)$
$\mathrm{x}_{2}=5 \sin (\mathrm{wt}+1.0)$.
(10 Marks)
2 a. Explain energy method that is used to determine the natura frequency of undamped free vibratory system.
(04 Marks)
b. A semicircular disc of radius r and mass m is pivoted freely about the center as shown in Fig.Q.2(b). Determine its natural frequeney of oseillation for small displacement. Use energy method.
(08 Marks)

c. A homogeneous cylinder of mass ' m ' and radius ' r ' is suspended by a spring and an inextensible cord as shown in Fig.Q.2(c). Obtain the equation of motion and find the natural frequency of vibration of the cylinder.
(08 Marks)

3 a. What is critical damping coefficient?
(02 Marks)
b. A spring - mass - dashpot system consists of a spring of stiffness $343 \mathrm{~N} / \mathrm{m}$. The mass is 3.43 kg . The mass is displaced 20 mm beyond the equilibrium position and released. Find the equation of motion for the system, if the damping coefficient of the dashpot is $13.72 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.
(10 Marks)
c. A spring - mass - damper system is having a mass of 10 kg and a spring of such stiffness which causes a static deflection of 5 mm . The amplitude of vibration reduces to $1 / 4$ the initial value in 10 oscillations. Determine :
i) Logarithmic decrement.
ii) Actual damping present in the system.
iii) Damped natural frequency.
(08 Marks)

4 a. Define "transmissibility". Derive an expression for "motion transmissibility".
(12 Marks)
b. A machine of mass 500 kg is supported on spring of stiff transmissibility". rotating unbalance of $0.25 \mathrm{~kg}-\mathrm{m}$, determine :
i) The force transmitted to the floor at 1200 rpm .
ii) The dynamic amplitude at this speed.
(08 Marks)

5 a. Discuss the principle of PART - B

b. A rotor of mass 12 kg is mounted of a vibrometer and an accelerometer.
(08 Marks) two bearings placed at 900 mm from each othiddle of 25 mm diameter shaft supported between the system rotates at 3000 rpm , determine the The rotor is having 0.02 mm eccentricity. If dynamic force transmitted to the bearing. Nege amplitude of steady state vibrations and the $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(12 Marks)
a. Determine the two natural frequencies and the corresponding mode shapes for the system shown in Fig.Q.6(a). The string is stretched with a large tension T. Also sketch the mode
shapes.

Fig.Q.6(a).
b. Explain the principle of dynamic vibration absorber.
(12 Marks)
a. Derive the differential equation for the
i) Lateral vibration of a string.
ii) Longitudinal vibration of a bar.
b. Specify the boundary condition for a cantilever beam, simply supported (14 Marks) fixed - fixed beam to determine the lateral vibration frequency.
8 a. Determine the fundamental natural frequency and (06 Marks) Fig.Q.8(a) using Stodola's method.
C

Fig.Q.8(a)

Fig.Q.8(b)
b. Calculate all the natural frequencies of a three rotor system shown in Fig.Q.8(b) by Holzer's method. Take $J_{1}=J_{2}=J_{3}=1$ and $K_{t_{1}}=K_{t_{2}}=1 \quad$ (10 Marks)

Sixth Semester B.E. Degree Examination, June/July 2011
Modeling \& Finite Element Analysis
Time: 3 hrs .
Max. Marks:100

Note: Answer FIVE full questions selecting at least TWO questions from each part.

PART - A

1 a. Explain plane stress and plane strain cases with examples.
(04 Marks)
b. Find an expression for the displacement at the loading point for the bar shown in Fig. Q1 (b).

(10 Marks)
Evaluate the following integral using two-point Gauss integration method:

$$
\begin{equation*}
I=\int_{-1}^{+1}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}\right) d x . \tag{06Marks}
\end{equation*}
$$

2 a. Write the general description of the finite element method.
(10 Marks)
b. Write down the properties of stiffness matrix.
(05 Marks)
c. Explain node numbering scheme for a finite element mesh.
(05 Marks)
3 a. Write down the general guidelines for selecting the interpolation polynominal. (03 Marks)
b. Derive shape function for a -D bar element in terms of global coordinates.
(07 Marks)
c. Derive shape function Dar a 2-D simplex triangular element in terms of local coordinates.
(10 Marks)
4 a. Derive interpretation polynomial (Shape functions) for 1-D quadratic element.
(10 Marks)
b. Derive shape functions for Isoparametric Linear Quadrilateral element in terms of local coordinates
(10 Marks)

PART -B

5 a. Explain different approaches used in developing element stiffness matrices and load vectors in FEM.
(05 Marks)
b. Derive stiffness matrix for a 1-D bar element under axial loading.
(05 Marks)
c. Derive strain-displacement matrix $[B]$ for a isoparametric linear triangular element.(10 Marks)

6 a. Write down the differential equation governing the heat conduction in an orthotropic solid body and describe each term.
(06 Marks)
b. Find the temperature distribution in the 1-D fin shown in Fig. Q6 (b). Take two elements for FE idealisation.

Fig. Q6 (b)
(14 Marks)
7 a. Describe different methods of applying boundary conditions in FEM.
(06 Marks)
b. For the two-bar truss shown in Fig. Q7 (b), determine the modal displacements through FEM. Take $\mathrm{E}=210 \times 10^{9} \mathrm{~Pa} ; \mathrm{A}=0.01 \mathrm{~m}^{2}$.

(14 Marks)
8 A uniform cross sectional beam is fixed at one end and supported by a roller at the other end. A concentrated load 20 kN is applied at the mid length of the beam as shown in Fig. Q8. Determine the reflection under load.

$\mathrm{E}=210 \mathrm{GPa}$
$\mathrm{I}=2500 \mathrm{~mm}^{4}$

Fig. Q8
(20 Marks)

Sixth Semester B.E. Degree Examination, June/July 2011 Mechatronics and Microprocessor

Time: 3 hrs .

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

2 a. Explain the following:
i) Primary and Secondary transducer.
ii) Active and Passive transducer.
iii) Analog and Digital transducer.
(06 Marks)
b. Explain "Hall Effect" and explain how this effect can be used to construct a sensor?
(07 Marks)
c. Explain the working principle of the following (with sketch):
i) Eddy current proximity sensors.
ii). Capacitive proximity sensors.
(07 Marks)
3 a. What is the bouncing in mechanical switches? Explain the hardware solution to the bouncing problems.
(08 Marks)
b. Differentiate between a diode, thyristors and transistor.
(05 Marks)
c. Sketch and explain the working of a stepper motor.
(07 Marks)
4 a. Write the basic relationship of an operational amplifier.
(08 Marks)
b. Explain the wheat stone bridge circuit used for strain measurement.
(07 Marks)
c. Write a note on data acquisition.
(05 Marks)

PART - B

5 a. With the help of a neat sketch explain the organization of a micro processor and state the functions of each element of the microprocessor.
(06 Marks)
b. In brief, explain the evolution of microprocessors.
(04 Marks)
c. State Demorgan's theorems. Draw logic circuits.
(04 Marks)
d. Explain different methods of representing negative number.
(06 Marks)
6 a. What are micro controllers? Distinguish between a micro processor and a micro controller.
b. Define the following:
i) Write cycle
ii) State bus
iii) Interrupts
iv) Assembler
(08 Marks)
c. Give the classification of micro controllers.
(06 Marks)
7 a. With the help of a neat sketch, explain the following:
i) Address bus.
ii) Data bus.
iii) Control signals (bus)
(07 Marks)
b. Explain the following:
i) Machine language.
ii) Assembly Language.
iii) Compiler and Interpreter.
(06 Marks)
c. With reference to 8085 , classify the instruction set and explain the following:
i) Program counter.
ii) Flags.
iii) Registers.
iv) Stack pointer.
v) Accumulator.

8 a. With the help of a neat sketch explain the data and instruction flow in a 8085 microprocessor.
(06 Marks)
b. What are different types of registers in a micro processor (Give classification). Explain each one of them in brief.
c. Explain the following with sketches:
i) Fetch operation (cycle).
ii) Execute operation (cycle).
iii) Instruction cycle.
iv) System clock.

Sixth Semester B.E. Degree Examination, June/July 2011 Heat and Mass Transfer

Time: 3 hrs .
Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.
 2. Use of HMT data handbook permitted.

PART - A

1 a. Derive general 3-dimensional conduction equation in Cartesian co-ordinates.
(08 Marks)
b. Write the mathematical formulation of one-dimensional, steady-state heat conduction for a hollow sphere with constant thermal conductivity in the region $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, when heat is supplied to the sphere at a rate of ' q_{0} ' $\mathrm{W} / \mathrm{m}^{2}$ from the boundary surface at $\mathrm{r}=\mathrm{a}$ and dissipated by convection from the boundary surface at $\mathrm{r}=\mathrm{b}$ into a medium at zero temperature with a heat transfer coefficient ' h '.
(04 Marks)
c. A stream pipe with internal and external diameters 18 cm and 21 cm is covered with two layers of insulation each 30 mm thick with thermal conductivities $0.18 \mathrm{~W} / \mathrm{m} . \mathrm{K}$ and $0.09 \mathrm{~W} / \mathrm{m} . \mathrm{K}$. The difference in temperature between inside and outside surfaces is $250^{\circ} \mathrm{C}$. Calculate the quantity of heat lost per meter length of the pipe if its thermal conductivity is $60 \mathrm{~W} / \mathrm{m} . \mathrm{K}$. What is the percentage error if the calculation is carried out considering the pipe as a plane wall?
(08 Marks)
2 a. Clearly define i) Fin efficiency and ii) Fin effectiveness.
(04 Marks)
b. Derive an expression for rate of heat transfer and temperature distribution for a plane wall with variable thermal conductivity
(08 Marks)
c. Thin fins of brass whose $\mathrm{K}=75 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ are welded longitudinally on a 5 cm diameter brass cylinder which stands vertically and is surrounded by air at $20^{\circ} \mathrm{C}$. The heat transfer coefficient from metal surface to the air is $17 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. If 16 uniformly spaced fins are used each 0.8 mm thick and extending 1.25 cm from the cylinder, what is the rate of heat transfer from the cylinder per meter length to the air when the cylinder surface is maintained at $150^{\circ} \mathrm{C}$?
(08 Marks)
3 a. Define i) Biot number and ii) Fourier number.
(04 Marks)
b. Show that the temperature distribution under lumped analysis is given by, $\frac{T-T_{\infty}}{T_{0}-T_{\infty}}=e^{-\mathrm{BiFo}}$, where T_{0} is the initial temperature and T_{∞} is the surrounding temperature.
(08 Marks)
c. A long cylinder 12 cm in diameter and initially at $20^{\circ} \mathrm{C}$ is placed into a furnace at $820^{\circ} \mathrm{C}$ with local heat transfer coefficient of $140 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. Calculate the time required for the axis temperature to reach $800^{\circ} \mathrm{C}$. Also calculate the corresponding temperature at a radius of 5.4 cm at that time. Take $\alpha=6.11 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \mathrm{K}=21 \mathrm{~W} / \mathrm{m} . \mathrm{K}$.
(08 Marks)
4 a. Using Buckingham π theorem, obtain a relationship between Nu, Pr and Gr for free convection heat transfer.
(08 Marks)
b. Explain the development of hydrodynamic boundary layer for flow over a flat surface.
(06 Marks)
c. Considering the body of a man as a vertical cylinder of 300 mm diameter and 170 cm height, calculate the heat generated by the body in one day. Take the body temperature as $36^{\circ} \mathrm{C}$ and atmospheric temperature as $14^{\circ} \mathrm{C}$.
(06 Marks)
a. Define clearly and give expressions for
i) Reynolds number ii) Prandtl number iii) Nusselt number iv) Stanton number.(08 Marks)
b. 50 kg of water per minute is heated from $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ by passing through a pipe of 2 cm diameter. The pipe is heated by condensing the steam on its surface at $100^{\circ} \mathrm{C}$. Find the length of the pipe required. Take for water at $90^{\circ} \mathrm{C}, \rho=965 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~K}=0.585 \mathrm{~W} / \mathrm{m} . \mathrm{K}$, $\mathrm{C}_{\mathrm{p}}=4200 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$ and $\gamma=0.33 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
(06 Marks)
c. Air at a temperature of $20^{\circ} \mathrm{C}$ flows through a rectangular duct with a velocity of $10 \mathrm{~m} / \mathrm{s}$. The duct is $30 \mathrm{~cm} \times 20 \mathrm{~cm}$ in size and air leaves at $34^{\circ} \mathrm{C}$. Find the heat gain by air when it is passed through 10 m long duct.
(06 Marks)
6 a. Give the classification of heat exchangers with relevant sketches.
(06 Marks)
b. With proper assumptions derive an expression for LMTD for a parallel flow heat exchanger.
(08 Marks)
c. A heat exchanger has an effectiveness of 0.5 when the flow is counter and the thermal capacity of one fluid is twice that of the other fluid. Calculate the effectiveness of the heat exchanger if the direction of flow of one of the fluids is reversed with the same mass flow rate as before.
(06 Marks)

7 a. With a neat diagram explain the regimes of pool boiling.
(08 Marks)
b. With proper notations and sketch define Fick's law of diffusion.
(05 Marks)
c. A vertical cooling fin approximates a flat plate of 40 cm henght and is exposed to saturated steam at $100^{\circ} \mathrm{C}\left(\mathrm{h}_{\mathrm{fg}}=2257 \mathrm{~kJ} / \mathrm{kg}\right)$. The fin is maintained at a temperature of $90^{\circ} \mathrm{C}$. Calculate,
i) Thickness of film at bottom of fin.
ii) Average heat transfer coefficient and
iii) Heat transfer rate after incorporatin Mc Adamis correction,

Take the following properties: $\rho=965.3 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{K}=0.68 \mathrm{~W} / \mathrm{w} . \mathrm{K}$ and $\mu=3.153 \times 10^{-4} \mathrm{~kg} / \mathrm{m} . \mathrm{s}$
(07 Marks)

8 a. Clearly define:
i) Black body
ii) Planck's law
iii) Wein's displacement law
iv) Lambert's law
(09 Marks)
b. It is desired to calculate the net radiant heat exchange between the floor of a furnace $4 \mathrm{~m} \times 2 \mathrm{~m}$ and a side wall $3 \mathrm{~m} \times 2 \mathrm{~m}$. The emissivity of the floor material is 0.63 and that of the side wall material is 0.2 . If the temperature of the floor and side wall are $600^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ respectively. Calculate the net heat exchange between them.
(05 Marks)
c. Two large patallel planes with emissivity 0.6 are at 900 K and 300 K . A radiation shield with one side polished and having emissivity of 0.05 and the other side unpolished with emissivity of 0.4 is proposed to be used between them. Which side of the shield should face the hotter plane, if the temperature of the shield is to be kept minimum? Justify you answer.
(06 Marks)

Sixth Semester B.E. Degree Examination, June/July 2011 Non - Traditional Machining

Time: 3 hrs.
Max. Marks:100

$$
\begin{aligned}
& \text { Note: Answer FIVE full questions selecting } \\
& \text { atleast TWO questions from each part. } \\
& \text { PART - A }
\end{aligned}
$$

1 a. Explain the need for development of non traditional machining.
(04 Marks)
b. Write a note on the source of energy harnessed and mechanism of material removal in nontraditional machining.
(06 Marks)
c. Write a note on abrasive and liquid media in USM.
(10 Marks)

2 a. Discuss the influence of the following parameters on USM process :
i) Amplitude and frequency of vibration
ii) Grain size
iii) Slurry
(10 Marks)
b. Write a note on process capability of USM. (05 Marks)
c. Briefly explain the process of "water jet machining".
(05 Marks)
3 a. How does the following parameters affect MRR in abrasive jet machining?
i) Nozzle gap distance
ii) Abrasive size
iii) Nozzle pressure.
(12 Marks)
b. Write a note on abrasives used in AJM with examples.
(08 Marks)
4 a. Describe various process parameters affecting ECM.
(10 Marks)
b. Calculate MRR and electrode feed rate in an ECM of iron (Fe) that has a cross sectional area of $25 \times 25 \mathrm{~mm}$ with NaCl in water as electrolyte. The gap between the tool and work piece is 0.25 mm . The supply voltage is 12 VDC and specific resistance of electrolyte is $3 \Omega \mathrm{~cm}$. Given the atomic weight of iron 55.85 , valence $=2$; density $7.87 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}$.
(07 Marks)
c. Differentiate between "fludging" and "non - fludging" electrolyte.
(03 Marks)

PART - B

5 a. Discuss the factors to be considered for selection of 'Maskants' and the types that are used in 'chemical machining'
($\mathbf{1 0}$ Marks)
b. Differentiate between 'chemical milling' and chemical blanking'.
(04 Marks)
c. Write a note on 'etchants' in 'chemical milling'.
(06 Marks)
6 a. Describe 'dielectric fluid' used in EDM.
(10 Marks)
b. Briefly explain effects of
i) Current / supply voltage
ii) Spark frequency.
(10 Marks)
7 a. Write a note on "generation of plasma" in plasma arc machining.
(05 Marks)
b. Sketch and explain any one type of plasma torch.
(10 Marks)
c. Explain a typical laser system adopted for machining process.
(05 Marks)
8 a. With a sketch, explain the principle of EBM.
(08 Marks)
b. Comment on the parameters influencing MRR in EBM.
(08 Marks)
c. Briefly discuss the merits and demerits of EBM.

Sixth Semester B.E. Degree Examination, June/July 2011 Management and Entrepreneurship

Time: 3 hrs .
Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions each from Part -A and Part - B.

PART - A

1 a. Explain the different skills and their importance at different levels of management.
b. What are the nature and characteristics of management?
(08 Marks)
c. Distinguish between management and administration.

2 a. Briefly describe the general principles of management as laid down by Henri Fayol.
b. State and explain the steps in decision making.
c. Differentiate between strategic and tactical plannin

3 a. What is line and staff organization?
b. Explain the nature and importance of staffing.
c. What is MBO? Explain.

4 a. What are the essentials of sound controlling?
b. Explain the importance of leadership in organization.
c. What are the barriers of successful communication?

PART - B

5 a. What are the qualities of entrepreneur?
(08 Marks)
b. Differentiate between entrepreneur, intrapreneur and manager.
c. What are the various stages of entrepreneurship process? Explain.

6 a. Explain the steps involved in setting up of a small scale industry.
b. What is the influence of LPG on SSIs? Explain.
c. Explain the role of SSI in economic development.

7 a. What are the objectives and functions of NSIC?
b. Narrate the function of SIDO for growth of SSI's.
c. What are the objectives of SFC's?

8 a. Write the need and significance of project report.
b. What do you mean by project feasibility study? Explain.
c. Define the project. What is its nature?
\square

Sixth Semester B.E. Degree Examination, June/July 2011 Mechanics of Composite Materials

Time: 3 hrs.

Max. Marks:100

> Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. List the desired properties of matrix and the reinforcement in a composite material.(05 Marks)
b. What are the advantages and limitations of composites over the other class of materials?
(10 Marks)
c. Define aspect ratio. Explain its significance.
(05 Marks)
2 a. Explain with sketch the Vacuum bag moulding technique of fabricating PMCs.
(10 Marks)
b. Explain with sketch the Blow moulding technique of fabricating PMEs.
(10 Marks)
3 a. Discuss the applications of fiber reinforced composites in automobiles.
(10 Marks)
b. Explain the salient features of PMCs leading to successful applications in aerospace engineering.
(10 Marks)
4 a. Differentiate between lamina and laminate.
(02 Marks)
b. Write stress-strain relationship in matrix form for a lamina and explain the terms involved.
(10 Marks)
c. Explain the relationship between engineering constants reduced stiffness and compliances. (08 Marks)

PART - B

5 a. Explain the basic assumptions in the analysis if laminated composites.
(10 Marks)
b. Explain interlaminar stresses and edge effects in laminated composites.
(10 Marks)
6 a. List the various types of reinforcements used in metal matrix composites.
(05 Marks)
b. Explain the processes in the production of carbon fibers.
(10 Marks)
c. Explain briefly the need for developing the metal matrix composites. (05 Marks)

7 a. Explain the powder metallurgy technique of producing metal matrix composites. (12 Marks)
b. Explain the In-situ fabrication process of metal matrix composites.
(08 Marks)
8 a. Compare the performance of metal matrix composites against bare metalswith respect to the following properties:
i) Tensile strength
ii) Fatigue strength.
(10 Marks)
b. Explain the effect of size, shape and distribution of particulates in metal matrix composites.
(10 Marks)

